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Preliminaries on stream ciphers and Boolean
functions

Synchronous stream ciphers :
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Every PRG consists in a linear part (for efficiency) and a nonlinear

part (for robustness).

Boolean functions f : Fn
2 → F2 are often used in the nonlinear

part.

There exist two theoretical models for their use in the pseudo-

random generators (PRG) of Synchronous stream ciphers.

Both use Linear Feedback Shift Registers in the linear part :
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Linear feedback shift registers :
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Combiner model :
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Filter model
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In both models, f must be balanced to avoid distinguishing attacks.

Two representations of Boolean functions :

• The Algebraic Normal Form (ANF) :

f(x1, · · · , xn) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, aI ∈ F2.

The ANF exists and is unique.

The algebraic degree is the degree of the ANF.

It must be large because of Berlekamp-Massey and Rønjom-Helleseth

attacks.
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Affine functions : sums of linear functions and constants :

a1 x1 + · · ·+ an xn + ε = a · x + ε ; a ∈ Fn
2 ; deg ≤ 1.

Their set is the Reed-Muller code of order 1.

• The univariate representation (the trace representation) :

- The vector space Fn
2 is endowed with the structure of the field F2n.

Any function f : F2n 7→ F2n admits the unique representation :

f(x) =
2n−1∑
j=0

aj xj; aj, x ∈ F2n.
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- f is Boolean if and only if :

a0, a2n−1 ∈ F2 and a2j = (aj)2,∀j ∈ Z/(2n − 1)Z.

Hence :

f(x) = tr(P (x)), where tr(x) = x + x2 + x22
+ · · ·+ x2n−1

.

Then the algebraic degree equals : max{w2(j); j s.t. aj 6= 0},
where w2(j) is the Hamming weight of the binary expansion of j.

Affine functions tr(ax) + ε, a ∈ Fn
2 , ε ∈ F2.
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The Walsh transform of a Boolean function :

f̂(a) =
∑
x∈Fn

2

(−1)f(x)+a·x or
∑

x∈F2n

(−1)f(x)+tr(ax).

The Hamming distance between two functions :

dH(f, g) = wH(f + g) = |{x ∈ Fn
2 / f(x) 6= g(x)}.
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The nonlinearity of a Boolean function f is the minimum Hamming

distance from f to affine functions (i.e. its distance to the Reed-Muller

code of order 1) and equals :

nl(f) = 2n−1 − 1
2

max
a∈Fn

2

|̂f(a)|.

The nonlinearity nl is upper bounded by 2n−1 − 2n/2−1 (covering

radius bound). This maximum is achieved by bent functions.

The nonlinearity nl must be large to prevent the system from fast

correlation attacks.
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Balancedness, high algebraic degree and large nonlinearity was

considered as roughly sufficient for the filter model of pseudo-random

generator before the introduction of algebraic attacks.
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Algebraic attacks on stream ciphers and algebraic
immunity

Algebraic attacks : Principle (Shannon) :

-Find equations with the key bits as unknowns

-Solve the system of these equations.

For stream ciphers (combiner model and filter model) :

- denote by (s0, . . . , sN−1) the initial state of the linear part of the

pseudo-random generator ;

- there exists a linear automorphism L and a linear mapping L′ s.t.

si = f(L′ ◦ Li(s0, . . . , sN−1)).
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Problem of the general algebraic attack :

Highly non-linear equations with many unknowns.

But with stream ciphers we can have many equations →

over-defined system.

One can then linearize the system (or use Gröbner bases).

However the number of unknowns is then much too large.
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Courtois-Meier : If one can find g 6= 0 and h of low degrees such

that fg = h, then the equation si = f(L′ ◦Li(s0, . . . , sN−1)) implies

the low degree equation :

si g(L′ ◦ Li(s0, . . . , sN−1)) = h(L′ ◦ Li(s0, . . . , sN−1))

and the degree of the nonlinear system and the number of unknowns

in the related linear system decrease.

Algebraic immunity :

A necessary and sufficient condition for existence of low degree g 6= 0
and h such that fg = h (Meier-Pasalic-C.C.) :

there exists g 6= 0 of low degree such that fg = 0 or (f + 1)g = 0.

15



Definition : a function g such that fg = 0 is called an annihilator.
The algebraic immunity AI(f) is the minimum degree of the nonzero

annihilators of f and of those of f + 1.

Related to coding problems over the erasure channel.

We have : AI(f) ≤ deg(f) and AI(f) ≤
⌈

n
2

⌉
.

A variant of algebraic attacks, called ”fast algebraic attack” needs

the existence of g 6= 0 and h such that fg = h, where only g has low

degree and h has degree significantly lower than n.
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The known Boolean functions with optimal
algebraic immunity

≤ 2008 :
- The majority function defined by :

f(x) = 1 iff wH(x) ≥ n/2.

and its generalizations by Dalai et al., Bracken, C.C... ;

- An iterative construction (Dalai-Gupta-Maitra), n even.

These functions have high degree but insufficient nonlinearity

and bad resistance to Fast Algebraic Attacks (Dalai, Gupta, Maitra,

Armknecht, C.C., Gaborit, Meier, Ruatta...).
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2008 :

Definition [CF function]

Let n ≥ 2 and α a primitive element of the field F2n.

We denote by f the Boolean function on F2n whose support is

{αs, · · · , α2n−1+s−1}.

Theorem (Feng, Liao, Yang)

The function f defined above has optimal algebraic immunity

dn/2e.
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A simpler proof by C.C., Feng uses the BCH bound (on cyclic codes).

Algebraic degree (C.C., Feng) : f has degree n− 1 (optimal).

Nonlinearity (Brandstätter, Lange, Winterhof, Hakala, Nyberg,

C.C., Feng, Tang, C.C.) :

nl(f) ≥ 2n−1 −
(n ln 2

π
+ 0.74

)
2

n
2 − 1

(better but still not sufficient).

The values of nl(f) computed for n ≤ 24 are good.
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The immunity to fast algebraic attacks checked for n ≤ 10 is

good.

A forthcoming paper by M. Liu, Y. Zhang, and D. Lin proves it.

The function can be fastly evaluated by the Pohlig-Hellman me-

thod : one output bit per cycle with 40,000 transistors for n = 20.
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Recent developments

Definition (Z. Tu and Y. Deng - Designs, Codes and Cryptogra-

phy)

(x, y) ∈ F2n × F2n; f#(x, y) = f(xy2n−2) = f

(
x

y

)
, with

x

0
= 0.

Theorem (Z. Tu and Y. Deng) up to a conjecture (studied by

J.-P. Flori, H. Randriambololona, G. Cohen 1 and S. Mesnager)

The function f# has optimal algebraic immunity n.
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Nonlinearity :

nl(f#) = 22n−1 − 2n−1

(f# has best possible nonlinearity ; it is bent).

Remark. Function f# is not balanced and has degree at most n

(as any bent function). But the function :

f#′
(x, y) =

{
f
(

x
y

)
if y 6= 0

f(x) if y = 0

has optimal algebraic immunity as well and is balanced. Its degree

equals 2n− 1 and nl(f#′) ≥ 22n−1 − 2n−1 − n 2n/2 ln 2− 1.
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But observations :

- This function is weak against the fast algebraic attack (C.C.,

IACR ePrint Archive).

- Its distance to bent functions and therefore to functions of alge-

braic degrees at most n/2 is small and this implies that its resistance

to fast algebraic attack is weak (Wang-Johansson, INSCRYPT 2010).

Any function constructed with a similar method would have the

same drawback.
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Definition (D. Tang, C.C., X. Tang)

n ≥ 2; (x, y) ∈ F2n × F2n; f1(x, y) = f(xy).

Algebraic immunity : up to a conjecture : AI(f1) = n.

This conjecture has later been proved by Cohen and Flori, using ideas

common with H. Randriambololona and S. Mesnager.

Algebraic degree : 2n− 2.

The immunity to fast algebraic attacks checked for n ≤ 8 is

good.

Nonlinearity : Nf1 > 22n−1 −
(
ln 2
π n + 0.42

)
2n − 1.
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Slight modification to get balanced functions :

Let n = 2tm be an even integer no less than 4 such that t ≥ 1 and

gcd(m, 2) = 1.

f2(x, y) =
{

f1(x, y), x 6= 0
u(y), x = 0

where u is balanced on F2n satisfying u(0) = 0, deg(u) = n − 1,

and maxa∈F2n |Wu(a)| ≤ 2
m+1

2 if t = 1 and maxa∈F
2k
|Wu(a)| ≤

t−1∑
i=1

2
n

2i+1 + 2
m+1

2 if t ≥ 2 (u does exist).

A further modification (more complex) allows acheiving 1-

resiliency.
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Algebraic degree and algebraic immunity f2 has maximal al-

gebraic degree for balanced function and optimal algebraic immunity.

Immunity to fast algebraic attacks, Nonlinearity : similar to

f1.

The Tu-Deng conjecture has been further generalized by C.C.-

Tang-Tang and a related construction has been proposed by Jin, Liu

and Wu.
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The exact values of the nonlinearity
n 4 6 8 10 12 14

2n−1 − 2n/2 4 24 112 480 1984 8064

NCF 4 24 112 484 1970 8036

Nf2
4 22 108 476 1982 8028

n 16 18 20 22 24 26

2n−1 − 2n/2 32512 130560 523264 2095104 8384512 33546240

NCF 32530 130442 523154 2094972 8384536 33545716

Nf2
32508 130504 523144 2094980 8384490 33545992

n 28 30 32 34 36 38

2n−1 − 2n/2 134201344 536838144 2147418112 8589803520 34359476224 137438429184

Nf2
134201460 536838052 2147416552 8589818968 34359469052 137438441620
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